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ABSTRACT 

REGINATO, Leonardo Fonseca. Application of machine learning techniques for 
modeling of relative permeability in engineered water injection in carbonate 
reservoirs. 2022. 82 p. Dissertation (Master’s in Science) - Escola Politécnica, 

Universidade de São Paulo, São Paulo, 2022. 

Numerical modeling of advanced production methods is always a challenge to be 

developed and applied in reservoir simulation. Some approaches, such as the use of 

laboratory experiments, arise to make this modeling feasible. However, this limits the 

speed of the solution to obtaining laboratory data and impairs its reproducibility. With the 

increasing use of Machine Learning (ML) tools to solve complex non-linear problems, we 

conducted these studies to train these ML tools and couple them to commercial simulation 

software. The training was based on parameters relevant to Engineered Water Injection 

(EWI). This advanced injection method seeks to use salinity control in the injection water 

to promote iterations between its ions and the rock minerals, to facilitate its flow into the 

porous medium. Thus, we structured a dataset containing salinity, mineralogy, and 

relative permeability data for the data-driven ML tool to learn the behavior of this data. 

Thus, this approach achieves accurate predictions, which were used as input data during 

injection modeling and simulation, validating its results by comparing with production 

simulation by conventional geochemical modeling. Finally, we performed optimizations 

with waterflooding injection and EWI, coupling the optimization with the advanced method 

of the ML pipeline. Thus, we test the efficiency of the ML approach with recursive 

simulations and compare the efficiency between the injection methods. For this, we apply 

these optimizations to the UNISIM-II benchmark, a reservoir model with characteristics 

based on Brazilian Pre-Salt fields. The objective function was Net Present Value 

maximization, which for the tests performed, EWI presented higher profit, even with a cost 

margin up to 300% higher than the cost of waterflooding.    

Keywords: Engineered Water Injection; Numerical Simulation; Carbonates; Machine 

Learning; Optimization. 

 



 

 

  



 

 

 

 

RESUMO 

REGINATO, Leonardo Fonseca. Aplicação de técnicas de aprendizado de máquina 
para modelagem da permeabilidade relativa na injeção de água calibrada em 
reservatórios carbonáticos. 2022. 82 p. Dissertação (Mestrado em Engenharia Mineral) 

– Escola Politécnica, Universidade de São Paulo, São Paulo, 2022. 

A modelagem numérica de métodos avançados de produção sempre é um desafio para 

ser desenvolvida e aplicada na simulação de reservatórios. Algumas abordagens como 

o uso de resultados laboratoriais surgem para tentar viabilizar essas modelagens. Porém, 

isso limita a velocidade da solução a obtenção do dado laboratorial e prejudica sua 

reprodutibilidade. Com o crescente uso de ferramentas de Aprendizado de Máquina (do 

inglês Machine Learning – ML) para solução de problemas complexos e não lineares, nos 

conduzimos esses estudos para treinar essas ferramentas e acoplá-las a um software 

comercial de simulação. O treinamento baseava-se nos parâmetros relevantes para a 

injeção de água calibrada (do inglês Engineered Water Injection – EWI). Esse método de 

injeção avançada busca utilizar o controle de salinidade na água de injeção para 

promover iterações entre seus íons e os minerais da rocha, para facilitar seu escoamento 

no meio poroso. Assim, estruturamos um conjunto de dados que contém dados de 

salinidade, mineralogia e permeabilidade relativa para a ferramenta ML guiada pelos 

dados aprender o comportamento desses dados. Assim, essa abordagem foi capaz de 

fazer previsões precisas, que foram utilizadas como dados de entrada durante a 

modelagem e simulação da injeção, validando seus resultados comparando com a 

simulação da produção pela modelagem geoquímica convencional. Por fim, realizamos 

otimizações com injeção de água comum e EWI, acoplando na otimização com o método 

avançado o pipeline de ML. Assim, testamos a eficiência da abordagem ML com 

simulações recursivas e comparamos a eficiência entre os métodos de injeção. Para isso, 

aplicamos essas otimizações no benchmark UNISIM-II, um modelo de reservatório com 

características baseadas em campos do Pré-Sal brasileiro. A função objetivo foi a 

maximização do Valor Presente Líquido, que para os testes realizados a EWI apresentou 

maior lucro, mesmo com uma margem de custo de até 300% superior ao custo da injeção 

de água comum.   



 

 

 

Palavras-chave: Injeção de Água Projetada; Simulação Numérica; Carbonatos; 

Aprendizado de Máquinas; Otimização. 
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CHAPTER 1 – INTRODUCTION 

Reservoir production has three main stages: (i) primary production, which makes 

use of the reservoir's natural energy; (ii) secondary, which uses external water or gas 

injection for pressure maintenance and (iii) tertiary, which develop injection fluids that 

promote physicochemical iterations to facilitate oil displacement. 

 Primary and secondary methods recover on average 60% of the oil volume in 

place. Usually, after many years of production via these methods, some tertiary injection 

(a.k.a. Enhanced Oil Recovery - EOR) is applied. However, this may reduce the recovery 

potential of the EOR method, which could be better performance when implemented 

earlier (BAI, 2008; BABADAGLI, 2020). 

 In carbonates, the use of advanced injection methods is attractive due to the high 

complexity of their petrophysical conditions, which are close to a third of the volume of oil 

recovered with primary and secondary methods (AUSTAD et al., 2015; 

CHANDRASEKHAR; MOHANTY, 2018; KAZEMI et al., 2014). 

Water injection is the most widely implemented recovery method in the world. In 

offshore conditions, this method has an advantage in raw material availability, reliability, 

and profitability. Usually, injected seawater treatments are made to promote compatibility 

with the rock, avoiding formation damage. To improve the technique efficiency, some 

authors have applied experiments to investigate the hypothesis of changing the 

composition of the brine to increase the injection efficiency (DANG et al., 2013). 

 

1.1 Method of LSWI/EWI 

Bernard published some of the first research in 1976 investigating the effects 

promoted in sandstone samples by freshwater injection. He hypothesized that hydratable 

clays reacted with the injected water to alter the properties of the rock samples. Morrow 

et al. (1998) analyzed the interactions of brine salinity with crude oil, mineralogy, and 

wettability settings. More recently, a series of analyses involving the topic has emerged 

to determine the potentials of each mechanism involving the injection (JERAULD et al., 

2008; MORROW et al., 1998; WEBB et al., 2004; ZHANG et al., 2006). 
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In the last two decades, some mechanisms found through the Low Salinity Water 

Injection (LSWI) include fines migration, wettability alteration, multi-component ionic 

exchange (MIE), pH modification, and electrical double layer effect. Also, these effects 

can occur in combination during the injection (DANG et al., 2013). 

In some cases, high salinities concentrations perform better, especially in 

carbonates. Thus, an update of the method is proposed, called Engineered Water 

Injection (EWI) (AL-SHALABI et al., 2015; CHANDRASEKHAR; MOHANTY, 2018; WEBB 

et al., 2005; ZHANG et al., 2007). 

The EWI assumptions are the same as the LSWI, but for the new method, the 

range of ions is higher, finding an optimal solution for each application. The works that 

have investigated injection define three ions (SO42-, Ca2+, and Mg2+) as the principal agents 

for changes to a more hydrophilic rock condition. Sulfate is the wettability modifying agent 

in carbonates, and the other two divalent cations (calcium and magnesium), promote 

strong interactions with the oil components (ADEGBITE et al., 2018; REGINATO et al., 

2021; STRAND et al., 2006; WEBB et al., 2005; YOUSEF et al., 2012). 

Wettability alteration is one of the fundamental mechanisms of LSWI/EWI 

application. Through the shape of the relative permeability curves, it is possible in 

qualitative analysis to classify this type of change, which produces an impact on oil and 

water permeability during injection (ALZAYER; SOHRABI, 2013; BRODIE; JERAULD, 

2014; FJELDE et al., 2012; REGINATO et al., 2019; WEBB et al., 2008). 

1.2 Numerical Modeling EWI 

Modeling the behavior of fluids considering these effects of ionic interactions is 

complex due to their nonlinear nature. Moreover, it is a multi-scale problem, which 

increases the difficulty of coupling the solution. Therefore, are develop few studies 

focusing on solving such complexities for the simulation environment (ESENE et al., 

2018). 

Jerauld et al. (2008) presented one of the first modeling approaches for LSWI. In 

that work, they show a simple correlation between the relative permeability and capillary 

pressure as a function of salinity. In 2012, Omekeh et al. presented a model of ion 

exchange and mineral solubility with LSWI. This approach had a standard oil condition 
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(Black-Oil), and the ions present in the composition were sulfate, calcium, magnesium, 

and sodium. The permeability change occurs in the function of ion exchange between the 

fluid and the rock surface. 

Dang et al. (2013) aggregate the aqueous and mineral interactions for their 

solution. They develop an ion-exchange model considering both situations, updating to 

multi-component compositions as well. Computer Modelling Group (CMG) commercial 

software uses that approach to modeling the LSWI behaviors. However, the solution 

needs experimental data to complete the geochemical modeling, requiring specific 

laboratory tests to collect this information. 

The numerical solution of LSWI/EWI is currently limited to complex approaches 

and laboratory experiments. Therefore, using new tools to incorporate the effects of 

salinity on wettability can bring new modeling perspectives. Hence, this work uses Artificial 

Intelligence (AI) tools capable of learning the relationship between the parameters 

involved in the injection with a simple approach. This training process, when well 

employed, allows accurate and agile predictions, reducing the numerical solution time 

compared to geochemical modeling. 

 

1.3 Machine Learning  

Artificial Intelligence (AI) technologies have gained considerable attention over the 

years due to their simple implementation, easy adaptation to different problems, and 

robust generalization capabilities (EVANS, 2019; SIRCAR et al., 2021). AI is defined by 

the ability of machines to replicate attributes of the human brain. Thus, these tools are 

programmed not to solve specific problems but to learn with data, enabling them to solve 

more complex problems (MALEKIAN; CHITSAZ, 2021).  

Machine learning (ML) is an AI application in which it uses data-driven 

mathematical tools, widely used in data forecasting (YASEEN et al., 2015). Artificial 

Neural Networks (ANNs) are one of the types of ML algorithms, which are inspired by 

brain biology  (MOHAGHEGH; AMERI, 1995). Their training defines a pattern among 

information, generating an empirical relationship between the data during the training 

process. Thus, ANNs are a powerful tool for prediction in data-dependent problems where 
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internal physics or the relationship between the data is complex for a conventional solution 

(GOVINDARAJU; RAO, 2013; MALEKIAN; CHITSAZ, 2021; NGUYEN et al., 2020). 

Artificial Neural Networks have nodes, artificial neurons, interconnect by 

coefficients (weights), composing the neural structure. The neuron operation initially 

receives the signals (input), multiplies them by their respective weights, and sums them 

up. Then the result goes through the activation function producing the output (Figure 1). 

The structure of an ANN has three main layers: input layer, hidden layer, and output layer. 

Therefore, the information (data) propagates from the input to output direction, making its 

training iteratively adjust the weights of each neuron, minimizing the error between the 

output and the actual value (AGATONOVIC-KUSTRIN; BERESFORD, 2000).  

 

Figure 1: Artificial neuron structure. 

 

Source: Perform by the Author. 

So, this mathematical relationship of the ANN model is expressed by the equation below: 

! = # +	&'!(!
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Equation 1: Artificial neuron equation.  
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Where X, input; Y, output; b, bias; m, number of inputs and W, weight. The 

activation function is responsible for the neuron activation or not. Thus, its purpose is to 

add nonlinearity to the output. The most common functions include logistic sigmoid and 

hyperbolic tangent (AGATONOVIC-KUSTRIN; BERESFORD, 2000; ARAGHINEJAD, 

2014; MALEKIAN; CHITSAZ, 2021). 

ML algorithms are divided into two learning methods, supervised and 

unsupervised. Supervised are those that need the output (or target) for accurate outcome 

prediction. Unsupervised learning aims to find patterns only based on unlabeled data. 

These unsupervised algorithms are powerful for finding hidden patterns in high numbers 

of features configuration without human intervention (LEE et al., 2005; MALEKIAN; 

CHITSAZ, 2021). 

Clustering is one of the applications for unsupervised ML models. This technique 

is one of the most common applications of data analysis. Its training process aims to 

generate a new set of categories through the similarity of the data, and this new data 

subset promotes more robust data analysis, allowing for multi-variable pattern observation  

(LIKAS et al., 2003; MADHULATHA, 2012). 

K-means clustering is a type of unsupervised learning with the goal is to cluster the 

unlabeled data based on the similarity between features. Initially, the number of K clusters 

is defined, and the algorithm randomly inserts K centroids into the space of variables. 

Then, the algorithm goes through the data measuring the Euclidean distance between 

them and the centroids (similarity). Then, iteratively, these centroids are repositioned 

(Figure 2) until be in the average position of each region which the density of objects is 

high (MADHULATHA, 2012; MORISSETTE; CHARTIER, 2013). 



21 

 

 

 

 

Figure 2: a - Initial K centroids randomly; b - After the training process the clusters are defined. 

 

Source: Perform by Author. 

 

1.4 Motivation 

Current modeling techniques for engineered water injection require complex 

geochemical solutions and specific laboratory data. Therefore, we use a Machine 

Learning (ML) procedure to learn the relationship between salinity, mineralogy, and 

relative permeability. Thus, we have a simple solution to coupling in simulation software, 

and easy to implement, requiring less petrophysical experimental data. In addition, this 

workflow development becomes powerful for studies with the injection method, which 

sometimes has no previous analysis of fluids and rock behavior in specific conditions. 

 

1.5 Objectives 

This work aims to develop an EWI simulation pipeline with coupling machine 

learning tools to reproduce the wettability alteration by predicting relative permeability 

behavior. That produces an alternative approach for modeling the advanced injection 

A

B
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A
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method behavior, which simplifies the numerical solution and reduces the amount of input 

data.  Also, we apply an optimization process, validating the approach performance and 

comparing the results between common water injection and EWI by maximizing the Net 

Present Value (NPV). 

1.6 Dissertation Overview 

Four chapters divide this work, relating two complementary approaches for 

modeling the effects of EWI using ML prediction tools. In addition, is employed an 

optimization process comparing the production simulation results between common water 

injection and EWI.  

Chapter 2 presents the first approach to developing a machine learning algorithm 

of the Artificial Neural Network type. Its learning used the injection concentrations (Ca, Mg 

and SO42-
) and the relative permeability curves, seeking to predict the behavior of the 

wettability alteration. Thus, we used a synthetic database for training, validating its 

production simulation with conventional geochemical modeling. Finally, we apply 

optimization of ordinary water injection and EWI to maximize the NPV of a case study. In 

this step, we validate the quality and agility of the predictions of the ANN coupled to 

optimization in the EWI case, then compare the performance between the two recovery 

methods. About the case study, for efficiency in the simulation time, we cut a portion of 

the proposed benchmark, the Unisim-II, with reduced dimensions of 6x6x30 cells, 

considering its economic scenario proportional to its cut size.    

In the third chapter, we expanded the current methodology through hybrid machine 

learning (HML) solution. In this approach, we first use an unsupervised classifier module 

(K-Means) to segment between 3 types of relative permeability, then three neural 

networks of the same type are trained using the data from each cluster. Thus, we 

developed more expert ANNs in each cluster label to improve the prediction performance 

due to increased training parameters, which in this case was: formation salinity (SO4, Ca, 

Mg, Na, Cl), mineralogy (calcite and dolomite), injection salinity (SO4, Ca, Mg, Na, Cl), 

and relative permeability. In this step, we also test the simulation pipeline coupling the 

new HML in the optimization process. Thus, we note the advantages of adding the 
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classifier before the predictions and the three expert neural networks in each condition, 

using the same reduced case study. 

 In the final chapter, we show the conclusions from the previous two chapters, 

discussing the improvements of the methodology with ML applied in the first step 

compared to conventional geochemical modeling. Then, we see the advantages in 

expanding this methodology and increasing the complexity of the problem through HML. 
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CHAPTER 2 – OPTIMIZATION OF IONIC CONCENTRATIONS IN ENGINEERED 
WATER INJECTION IN CARBONATE RESERVOIR THROUGH ANN AND FGA 

Abstract 

Engineered Water Injection (EWI) has been increasingly tested and applied to 

enhance fluid displacement in reservoirs. The modification of ionic concentration provides 

interactions with the pore wall, which facilitates the oil mobility. This mechanism in 

carbonates alters the natural rock wettability being quite an attractive recovery method. 

Currently, numerical simulation with this injection method remains limited to simplified 

models based on experimental data. Therefore, this study uses Artificial Neural Networks 

(ANN) learnability to incorporate the analytical correlation between the ionic combination 

and the relative permeability (Kr), which depicts the wettability alteration. The ionic 

composition in the injection system of a Brazilian Pre-Salt benchmark is optimized to 

maximize the Net Present Value (NPV) of the field. The optimization results indicate the 

EWI to be the most profitable method for the cases tested. EWI also increased oil recovery 

by about 8.7% with the same injected amount and reduced the accumulated water 

production around 52%, com- pared to the common water injection. 

 

2.1 INTRODUCTION 

Reservoir engineering seeks to manage the entire productive life of the field. This 

requires using computational tools to find the best strategy and to guarantee the highest 

NPV. Its simulation requires parameters, such as physical, chemical, petrophysical, 

extension, localization, and architecture. Thus, knowing these conditions and considering 

economic scenarios, it is possible to decide on a better oil recovery method. 

These numerical models seek to be the best real reservoir representation, but often 

some information is disregarded to enable the simulation, which generates unreliable 

forecasting data to outline a successful strategy in the production of this field. According 

to Fabrri et al. (2020), one solution is to calibrate the simulation with experimental work, 

but this can provide an increase in computational effort. Thus, it is ideal to use simulation 
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tools that preserve its real characteristics, especially when combined with advanced 

production methods (BREITENBACH, 1991; LIE, 2019; MUSTAFIZ; ISLAM, 2008).  

Some oil recovery methods have gained attention, such as Low Salinity Water 

Injection (also called Smart Waterflood (Saudi Aramco), Designer Water (Shell), LoSal 

(British Petroleum), and Advanced Ion Management (ExxonMobil)). In general terms, Low 

Salinity Water Injection (LSWI) is an enhanced technique in which the ionic concentration 

control of injected water results in additional oil recovery of the field (DANG et al., 2015). 

After intensive laboratory research and field-scale tests with LSWI achieve positive 

responses, the method is currently accepted and applied by major oil companies 

worldwide (ZHANG et al., 2020). 

This technique appears in one of the first surveys by Bernard (1967), who observed 

a different oil recovery in the tested samples, just varying the injected brine composition. 

The author hypothesizes that this effect happens in the interaction with freshwater and 

hydratable clay present in sandstone samples. In 1998, Morrow et al., quantified the 

influence of brine composition in the wettability properties, using the spontaneous 

imbibition core test, beginning the discussion on a multi-effect occurring during the water, 

oil, and rock interaction.  

Other works confirm the LSWI as an appropriate application in carbonate 

reservoirs, in which the main effect reported was the reduction of the polar bond between 

carboxylic compounds and rock minerals, increasing the pore wall water adsorption 

(STRAND et al., 2006; ZHANG et al., 2007; YOUSEF et al., 2010; FATHI et al., 2011). 

Therefore, the control of potential ions (SO42-
, Mg

2+
, and Ca

2+
) results in a modification of 

natural wettability characteristics. Thus, the Wettability Alteration (WA) to more water-wet 

conditions is a crucial parameter to decrease the residual oil saturation (HIRASAKI et al., 

2004; SEETHEPALLI et al., 2004; WEBB et al., 2004; SAIKIA et al., 2018).  Zaheri et al. 

(2020) perform coreflooding analysis with carbonates using LSWI. They observed a 

relation between higher calcium content in formation water and a more oil-wet condition. 

They also noted the calcium concentration reduction and the sulfate presence affected 

the ultimate oil recovery. 

According to Adegbite et al.(2017), wettability alteration is the main reason for 

incremental oil recovery by LSWI in carbonate reservoirs. Also, they suggest a new 



26 

 

tendency to adapt the original ionic composition with a higher salinity range for each 

application. Through this concept, an update in the LSWI was generated, called 

Engineered Water Injection (EWI). Following the same hypothesis of the predecessor 

method, the differences are in raising the salinity limits, enabling to use higher ions 

concentrations.  

Regarding the EWI method, a number of researches use an experimental approach 

to replicate the flow conditions in the reservoir and to determine the fundamental 

mechanism present in the analysis. Several works classify the effect of wettability 

alteration, fines migration, multi-component ionic exchange (MIE), pH modification, effect 

salt-in, contact angle measurement, electrical double layer and interfacial tension as the 

main effects (JERAULD et al., 2006; DANG et al., 2016; GHOSH et al., 2016; BIDHENDI 

et al., 2018; XIAO et al., 2018). According to different authors, it is possible to represent 

wettability alteration through changes in the relative permeability curves (JERAULD et al., 

2008; FATHI et al., 2011; YOUSEF et al., 2011; REGINATO et al., 2019). Wettability 

alteration is extensively investigated to understand the influence in the oil and water 

behavior, being directly relevant to the macroscopic relative permeability (ZHANG et al., 

2020). 

The combination of these main mechanisms in EWI has a complex numerical 

background, making rare the development of analytical models capable of depicting this 

injection scheme. Therefore, it was common to use a simple relationship as a linear 

function among salinity, relative permeability, and capillary pressure (DANG et al., 2013). 

To enhance this modeling, researchers of the Computer Modeling Group (CMG), the 

University of Calgary and University of Texas at Austin developed a new complete 

approach that translated some present mechanisms of LS injection, using some 

experimental results as input data to perform the simulations (DANG et al., 2016). The 

authors sought to couple some equations from exclusively geochemical software to a 

compositional flow simulator. Even knowing the numerical limitations, the authors 

proposed to validate this coupling by comparing the results of experimental injections in a 

coreflooding system (FJELDE et al., 2012). This test obtained quite significant results in 

this coupling to the flow simulator. Another aspect of the existing models for LSW/EWI 
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simulation is a simplistic assumption whose change in wettability implies only in the 

modification of two-phase flow parameters (BOURBIAUX, 2020). 

In most cases, the specific parameters required by simulation software to model 

the EWI are unknown, which makes this analytical tool useless without an initial 

experimental analysis. Thus, to provide an alternative to model this advanced injection 

with the absence of a laboratory data source, our study performs the training of a machine 

learning tool called Neural Net Fitting (NNF) that can reliably predict wettability changes 

considering a given salinity combination and relative permeability set in numerical 

simulation scale.  

Moreover, we carry out an NPV maximization in a case study benchmark called 

UNISIM-II (CORREIA et al., 2015). The ionic concentration of water injected is optimized 

by the Fast-Genetic Algorithm (FGA), which provides the economic analysis of EWI and 

common water injection. 

 

2.2 METHODOLOGY 

As this work was performed only in a computational environment, it was necessary 

to use synthetic information to compose the database for future neural network training; 

therefore, some templates provided by CMG® were selected. We simulated these 

templates using EWI geochemical modeling with different salinity for each case through 

conventional software (compositional simulator). After that, a specific algorithm (Kr-

Module) adjusted the initial relative permeability curves of a regular template until 

obtaining the same production simulation with geochemical modeling. The database 

generated was composed of the original Kr and corresponding salinity case as input and 

the newfound Kr curve as output, starting the network development. At the training stage, 

we tested different network patterns up to the maximum forecasting quality, based on 

statistical tools. The network provided a new Kr curve through the original curve and a 

given salinity. Then, we coupled the best neural network to the simulation, performing the 

validation by comparing the production outcome between the geochemical simulation 

(modeled in the CMG software) and the ANN. 
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Finally, ensuring the reliable application of the neural network, we coupled it to the 

optimization phase with the Fast Genetic Algorithm (FGA) to maximize the profits 

considering a range of costs, concluding the workflow (Figure 3).  

 

Figure 3: Workflow of general methodology.  

 

Source: Perform by Author. 

 

2.2.1 Conventional EWI Modeling and Simulation 

 In Both modeling ways (geochemical EWI and coupled by ANN) use the CMG 

software for simulation. The software requires informing the initial geochemical conditions 

of the EWI, such as the modeling method, the formation water salinity, the geochemical 

reactions considered and rock mineralogy. All the simulated cases keep the same input 

parameters, assigning the injection salinity as the only change agent in the production 

outcome.  
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2.2.2 Database for Neural Network Training 

 The database consists of 19 synthetic reservoir models selected from the CMG 

collection, from which the similarity with carbonate petrophysics and the possibility to 

apply the EWI modeling were the criteria to choose on these templates. Some of these 

are based on the SPE comparative solution project, which are generic benchmarks 

developed through experimental data and used to compare simulation performance or 

practice the functions of the software. Their particularities were also maintained, such as 

the wells position, flow rates, grid size, oil composition, and others, for a better network 

generalization, so that the results used in training were comprehensive in the reservoir 

configuration. Each template received the EWI modeling 15 times with random salinity, 

totalizing 285 cases. We defined the database structure with original Kr curves, their 

corresponding salinity, and the new Kr curve produced from conventional EWI. However, 

the commercial software becomes limited in the initial Kr curves and does not provide the 

state of the curve after the simulation. Thus, to generate this information, we developed 

the algorithm called Relative Permeability Module. This code aims to minimize the error 

between productions of the same template with and without EWI modeling, assigning 

adjustments to the Kr model curve without EWI to reduce this error (Figure 4). In practice, 

the Kr-Module adjusts the relative permeability of the model until the production result with 

the altered Kr curve be equal to the EWI. Thus, the new Kr correlates with the production 

change simulated by the EWI method and its salinity used. 
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Figure 4: Relative Permeability Module procedure.  

 

Source: Perform by Author. 

This module was coupled with the Fast Genetic Algorithm (SAMPAIO et al., 2015) 

but adapted to minimize the error between the expected and simulated production 

outcomes, as shown in Figure 5. The algorithm inspiration is the evolution of a population 

through the generations (as in natural selection) using crossover and mutation until 

achieving the best solution (elite individual); in this case, it is the result with a minimum of 

the normalized Mean Squared Error (nMSE). Thus, the code requires the number of 

generations and quantities of individuals for generations to run. This code presents 

improvements in its solution speed, working with advanced modules and enhancing the 

simple crossover, parent selection, and evaluation function types. 
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Figure 5: Workflow of Relative Permeability module coupled to FGA algorithm.  

 

Source: Perform by Author. 

 

Recursively, the algorithm performed the adjustments to each specified model, 

saving its results in the database.  We also converted the Kr curve into Corey equation 

parameters (Equations 2 and 3), establishing as input the original Kr-Corey parameters, 

their corresponding potential ion concentration and output the changed Kr-Corey 

parameters (Figure 6). This Kr curve transformation was necessary following the network-

training criteria to reduce repeated data. The dataset parameters were selected to achieve 

the best of the neural network training. Therefore, the initial conditions (Swc and Kro at 

Swc) of multiple reservoir types were included to contribute to the improvement in the 

ANN performance. 
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Figure 6: Illustrative structure of the database for ANN training separated into input and output 

data. 

 

Source: Perform by Author. 

 

 Thus, the number of input parameters was equal to 12 with 8 for the Corey 

equation, 3 to salinity concentration, and 1 to salt interpolator. The output corresponded 

to 8 from the Corey equation. Brooks and Corey (1964) developed the equations below 

to allow calculating the permeability of a fluid at a given saturation that the medium is at 

the reference fluid. 

!"# = !"#%& ' 1 − *& − *#"1 − *%& − *#"+
!"

 (2) 

!"& = !"&#" ' *& − *&%",-
1 − *&%",- − *#"+

!#
 (3) 

where Equation 2 is for oil relative permeability and Equation 3 for water relative 

permeability of Corey formulation. 

 

The parameters used in the network training are: 

§ Krocw – Relative permeability of oil with connate water condition; 

§ Krwor - Relative permeability of water in oil residual condition; 

§ Sw – Water saturation; 

§ Sor – Residual oil saturation; 

§ Scw – Connate water saturation; 

§ Swcrit – Critical water saturation; 

§ No – Corey exponent of oil; 

 Input Parameters Output Parameters 

 No Nw Sorw Scw … SO42- Mg2+ Ca2+ No Nw Sorw Scw … 

Tpl-1 EW1 3.4 2.3 0.7 0.2 … 9783 8744 2376 3.2 2.0 0.6 0.3 … 

Tpl-1 EW2 2.5 4.3 0.5 0.1 … 3265 6431 3489 1.3 3.5 0.8 0.1 … 

… … … …. … … … … … … … … … … 

Tpl-1 EWn 3.1 3.7 0.9 0.17 … 4354 9822 3245 2.5 3.1 0.7 0.2 … 
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§ Nw – Corey exponent of water. 

2.3 Neural Net Fitting Features 

The best ANN following the MATLAB® applications for prediction purposes was 

the Neural Net Fitting (NNF) that can solve the data fitting problem using a simple 

architecture named feedforward. Mohaghegh (2000) defined the feedforward network as 

a set of neurons grouped in layers, where they usually consist of an input layer, hidden 

layer and output layer, as shown in Figure 7. The number of input neurons is equal to the 

number of parameters presented to the network; this also happens in the output layer, 

and the hidden layer can vary in neurons or layers. This interconnected system and 

composed of neurons works in three main steps: multiplication, sum and activation. The 

neuron multiplies each input data with its respective weight, sums these results, and uses 

a filter called the Activation Function (STRIK et al., 2005). 

 

Figure 7: Architecture of feedforward network, (a) input layer; (b) hidden layer, and (c) output 

layer. 

 

Source: Perform by Author. 

This ANN uses a supervised learning method, which generally performs its training 

process combining the input data with the output (or labels), facilitating the creation of 

regression or classification, and indicating a quantitative relationship between them. Yet 

the limitation is that the training database needs to be complete, without missing data 

Input Parameter Output Parameter

(a) (b) (c)
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(GHAHRAMANI, 2004; TALABIS et al., 2015; RAJASEKARAN; VIJAYALAKHMI PAI, 

2017; SHOBHA; RANGASWAMY, 2018). 

Another important aspect of configuring the network is its training algorithm, for 

which we opted for the Bayesian Regularization (BR). We performed some training tests 

with the other methods available, but both these results and theoretical concepts of the 

BR method converged to its use. This method is a mathematical process to adapt a 

nonlinear regression to statistical problems (well-posed). The robustness of the model 

minimizes the effect of overtraining or overfitting and has an automatic relevance 

determination (ARD). The ARD calculates the relevance for each input parameter, 

neglecting the irrelevant or highly correlated indexes (BURDEN; WINKLER, 2008). The 

Bayesian Regularized ANN (BRANNs) incorporates probabilistic interpretation into the 

regularization scheme. The regularization is a method to penalize the highest and the 

smallest weight in the neuron network and to ensure the best generalization (KAYRI, 

2016). According to the MATLAB® guide, this BRANNs algorithm is slower in learning 

because at each learning epoch, the algorithm performs the relevance analysis, reducing 

the training speed but conserves the quality of the forecast, being ideal in training cases 

with a low number of samples, a high number of variables and non-linearity.  

We also carried out another training test looking for the number of neurons in the 

hidden layer that would guarantee the maximum forecasting quality. We tested five 

different configurations (12, 15, 17, 20, and 25), and the results with 15 neurons in the 

hidden layer showed the best performance. All training followed a cross-validation process 

with the same configuration (70% of the data for training, 15% for validation and 15% for 

testing); 30 samples of the UNISIM-II case study (CORREIA et al., 2015) were generated 

to serve as a second validation of each network test, using the error between the expected 

and predicted result as a quality analysis. Thus, the best network was called “Net15_BR”. 

2.4 FGA and NNF Coupling 

 To assess the economic attractiveness of EWI, we carried out a process of 

production optimization aiming at maximizing the NPV. We conducted a first optimization 

of the operational variables of the wells (injection/production flow rate and pressure) with 

common water injection, considering the economic scenario of the benchmark used. Next, 
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we performed the optimization of the same model, using EWI; in this case, variables of 

wells, the ion concentrations, and the interpolator were added as optimization parameters. 

Thus, it was possible to compare which injection method would yield the highest profit and 

what the optimized ion configuration would be. 

As a tool for optimization, the original Fast Genetic Algorithm (SAMPAIO et al., 

2015) was used, applied in this stage to maximize the NPV field. The best-trained network 

was coupled to the optimization, adding a step to the FGA code with the salinity 

concentration and interpolator ion as decision variables. This routine also extracted the 

original Kr curve from the corresponding model optimized, transforming it into Corey 

parameters and organizing with the chosen salinities, giving these data to the neural 

network "Net15_BR", which provided the new Kr curve. In general, this coupling was 

necessary to predict the new Kr curve at a given ionic concentration defined by the 

optimization process, inserting this curve in the corresponding model before the simulation 

stage.  

2.5 Case Studies 

2.5.1 Engineered Water Conventional Simulation Features 

As previously mentioned, it is necessary to preset of the salinity composition of the 

formation water, mineralogic content, the geochemical reactions, and the modeling 

method to perform the simulation with EWI. Thus, to simplify the modeling method, we 

select the interpolator ion method and its salinity range (Tables 1 and 2). 

Table 1: Parameters for modeling EWI in the simulator. 

EWI Parameters for Simulator 

Kr Interpolation 

Begin (ppm) 
Kr 

Interpolation 

End (ppm) 
Sets of 

Inputs 

Sor Reduction    

(Sor - EW/Sorw) 

Krw Reduction    

(Kr - EW/Krw) 

700 200 2 0.6 0.75 

Source: Perform by Author. 
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Table 2: Ionic concentration of water injection and mineral percentual range. 

Formation Water Salinity (ppm) Mineral Concentration (%) 

pH Cl- SO4
2- Ca2+ Mg2+ HCO3- Na+ Calcite Dolomite 

7 17500 100 100 100 100 17500 0.5 0.5 
Source: Perform by Author.  

These settings were defined arbitrarily, as the formation water composition had 

about 35,000 ppm of total salinity, composed basically of Na
+
 and Cl

-
. For mineral 

concentrations, we set 50% dolomite and calcite, according to the pattern found in most 

carbonates. 

Each template selected for constructing the database generated 15 new cases of 

EWI geochemical modeling, with random salinity ranging from 1000 to 9999 ppm and 

considering the same configurations on the formation water and mineralogical content 

shown above (Tables 1 and 2). In every 5 cases with EWI, the alteration in the potential 

interpolation ion (between SO42-
, Mg

2+
, and Ca

2+
) was defined, increasing the diversity of 

ionic combinations and their corresponding effects. Finally, with all the 19 templates with 

15 EWI random salinity cases created, we simulated these 285 samples and extracted 

the required data for the next step in the training network. With the data in Tables 1 and 

2 kept the same for all tested models, changes in production are attributed exclusively to 

different ionic combinations. That allows the correlation between the new Kr data via Kr-

Module with the corresponding salinity used in each model. 

The fluid model was composed of seven components (Cl
-
, SO4

2-
, Ca

2+
, Mg

2+
, HCO

3-

, Na
+
, H

+
), and rock contained two minerals (Calcite and Dolomite). Four aqueous phase 

reactions to describe the ionic interactions in the geochemical simulation were included: 

(/*0$%) ↔ (/&) + (*0$'%) (3) 
(4546&) ↔ (45'&) + (46%) (4) 
(7846&) ↔ (46%) + (78'&) (5) 
(95*0$%) ↔ (95&) + (*0$'%) (6) 

These reactions were selected, respecting the main interactions between the NaCl 

and the three potential ions. The mineral phase reactions that incorporate the Calcite and 

Dolomite dissolution and precipitation are shown below: 
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(4540() + (/&) ↔ (45'&) + (/40() (7) 
(4578(40()') + 2(/&) ↔ (45'&) + 2(/40(%) + (78'&) 

 

(8) 

According to Dang et al. (2015), the difference between the composition of the in-

situ and injected water disrupts the initial geochemical conditions, so the chemical 

equilibrium reactions calculate the behavior of these salts in each reservoir cell. On the 

other hand, the wettability alteration modeling occurs through shifting in the relative 

permeability curves, and the controller of this adjustment in the curves is the ion 

compositions obtained through these equilibrium reactions. Thus, this ionic balance in 

each cell allows a more precise adjustment in the relative permeability curves, considering 

the variation in salinity in different regions of the model. 

 

2.5.2 Optimization Settings 

At the optimization stage, a decision criterion was necessary for the algorithm to 

select an interpolator ion as an adjustable variable defining a chosen range of between 1 

to 3, and the algorithm was specified as shown in Table 3. 

Table 3: Range defined for the algorithm chosen between each interpolator ion.
 

Definition of Ion Interpolator 

SO42- 
Between 1 and 1.5 

Ca
2+ 

Between 1.6 and 2.5 

Mg
+ 

Between 2.6 and 3 

Source: Perform by Author. 

The algorithm thus selected the value within the range, and automatically 

transformed that number into the equivalent potential ion. 

After the successful coupling of the neural network to the FGA, the initial 

parameters of the optimizations were configured (Table 4). We performed a series of tests, 

setting the maximum number of 200 individuals in the optimizations. 
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Table 4: Parameters for optimization with FGA. 

Fast Genetic Algorithm Parameters 

Number of generations 20 

Population size 10 

Elite individuals 1 

Crossover rate 0.8 

Source: Perform by Author. 

 
2.5.3 UNISIM-II Benchmark  

 The case study selected in this work was the UNISIM-II, developed by the Unisim 

group from Unicamp (CORREIA et al., 2015). The model structure combines the Brazilian 

Pre-salt and Ghawar fields, providing the description of an economic scenario as well. 

The dimension of this carbonate reservoir model is 5000x5000x150m and composed of 

16 faults. Each grid cell has 50x50x1m, with a thin super-k zone. Further field information 

is: 

• Depth of reservoir between 5,000 and 5,500m from the sea level; 

• Initial reservoir pressure 560 kgf/cm
2
; 

• Intermediate-wet relative permeability; 

• Live oil viscosity to 1.14 cP; 

• Reservoir temperature equal to 58.8ᵒC. 

 The benchmark determines operational boundaries for injection and production 

wells (Table 5), used as upper and lower limits in the well optimization step. 

Table 5: Operational well conditions, adapted by Correia et al., (2015). 

Type Vertical Producer Vertical Injection 

Max. water rate (m3/day) - 5000 

Min. oil rate (m3/day) 20 - 

Max. liquid rate (m3/day) 2000 - 

BHP (kgf/cm2) Min 190 Max 350 

Source: Perform by Author. 
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 To minimize the simulation time, we reduced the reservoir size selecting a section 

with 6x6x30 cells (Figure 8) chosen in a representative location, that preserves its 

architecture and behaviors. We also implemented one vertical injection well with a quarter 

of the area open to flow in the corner of this cut model, and a production well with the 

same condition in the opposite corner. The layout of the wells follows the injection pattern 

with a quarter of five-spot configuration, with a 450m distance between them. 

 

Figure 8: Cut model from USINIM-II-D, showing the porosity parameter. 

 
Source: Perform by Author. 

 

The deterministic approach of the benchmark used contains its economic scenario 

(Table 6), which updated the gas cost and price based on the U.S. natural gas price. 

Following the indications in the model description, we calculated the investment cost in 

the platform using the equation presented by Hayashi (2006) (Equation 3). We considered 

the maximum wells capacities of a quarter of the given description, adjusting this 

investment to the settings defined for the cut model. 

 

)*+%&'( = 417 + (13.2 ∗ 45) + 3.2 ∗ 456 + 3.2 ∗ 45* + 3.247* + 0.1 ∗ 9*) (3) 

  

Given that: 
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§ )*+%&'(: Investment on the platform (USD millions); 

§ 45): Oil processing capacity (1000 m
3
/day); 

§ 456: Liquid processing capacity (1000 m
3
/day); 

§ 45*: Water processing capacity (1000 m
3
/day); 

§ 47*: Water injection capacity (1000 m
3
/day); 

§ 9*: Well’s number. 

Table 6: Economic scenario used in the optimization study. 

Variables Values 
Oil price 54.76 US$/STB 

Gas price 0.70 US$/STB 

Costs (US$/stb) 
Oil production 10.952 

Gas production 0.4675 

Water Production 1.1 

Engineered Water Injection 1.98 

Water injection 1.1 

Investments (US$ millions) 
Drilling and Completion vert. well 22.8/m 

Connection vertical well-platform 13.3 

Platform Equation 3 

(1) PIS and COFINS are specific Brazilian taxes.  

Source: Adapted from Correia et al. (2015). 

2.6 Results and Discussion  

In this section, we divided the results into two parts. First, we approached the 

quality of neural network prediction based on statistical tools (nMSE). We then compared 

the optimization results, evaluating the final profit with the injection of seawater and EWI, 

the wells conditions, and the optimum salinity solution. We also optimized four cases of 

EWI varying only the cost of this engineered water injection, which showed its influence 

on the profits and on the optimized ion composition. 

2.6.1 Validation of Network Predictions 

 We tested different neural network configurations to guarantee the best 

performance. We compared five sizes of hidden layers with two distinct training algorithms 
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(Figure 9). According to the theory, the training method of Bayesian Regularization (BR) 

is more indicated due to its data configuration, even so, we tested the training with the 

Levenberg-Marquardt (LM) algorithm to ensure that.   

 

Figure 9: Comparison with the prediction performance network varying the number of hidden 

neurons and learning algorithms. 

 
Source: Perform by Author.  

In Figure 10, the comparison uses the data generated specifically for validating the 

networks already trained with the 30 cases of random salinity from the UNISIM-II model. 

Note that these data are not used in the training of the neural network, proving its ability 

to predict and to generalize through the normalized Mean Squared Error (nMSE). The 

nMSE shows that the closer to zero, the more similar the forecast result is than the 

expected value. Thus, based on nMSE, the neural network that obtains the best result is 

the one with 15 neurons in the hidden layer (Net15_BR). We noted that the variation 

between the nMSE with each training algorithm is not sharp, but this difference generates 

divergence in the production simulation because the Kr has high sensitivity in the software, 

making it essential to use the network with the best performance. 
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It was possible to confirm the benefits of using the BR network with the 

determination of relevance (ARD) and robust regularization (Figure 9). The absence of 

that in the LM algorithm impaired its training, which achieved high learning speed; but in 

these conditions, the regularization effort by BR is compensated with a better forecast. 

 The Net15_BR was coupled to the simulator to forecast Kr curves at a given salinity 

of the water injection, and we started to investigate the quality of this approach in 

production simulation. Thus, using the UNISIM-II model and its 30 test cases, we 

compared the production result between geochemical EWI modeling of GEM simulator 

and the ANN approach, following the same salinity compositions as the test models. The 

nMSE was applied to quantify the similarity in the oil and water production curves between 

these two schemes for EWI modeling (Figure 10). The comparison of results shows a 

satisfactory quality in the replacement of the geochemical modeling CMG package with 

the neural network, which was able to reproduce similar behaviors in the production 

simulation through only changes in Kr. The mean of the nMSE for the 30 cases compared 

in the analysis was mean-nMSE of oil equal to 0.0528 and mean-nMSE of water equal to 

0.1189, with satisfactory results of the simulation performance coupling the ANN, enabling 

its use at the optimization stage. 
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Figure 10: Normalized Mean Squared Error (nMSE) of Oil/Water Production between 

Conventional Simulation and Simulation with Net15_BR coupled. 

 
Source: Perform by Author. 

Figure 11 displays a plot referring to model 14, one of the cases with values closer 

to the average of the tested models. We plot with production histories generated between 

the compared methods, being possible to observe the quality that the ANN approach (in 

green) reproduces. 
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Figure 11: Simulation Results, comparing the traditional EW Simulation and Simulation with 

Net15_BR relative permeability results. 

 
Source: Perform by Author. 

We also compared the aspect of simulation time (Figure 12), in which the ANN's 

predictive agility did not add more calculations to the numerical simulation, providing its 

simulation solution faster than conventional modeling. The software geochemical EWI 

modeling package adds calculation routines to predict the behavior of ion dissolution and 

adsorption rates, increasing the computational effort and the solution time. Therefore, the 

ANN application ensured similar results to the GEM modeling package with a significant 

time reduction.  
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Figure 12: Simulation time comparison between the ANN coupling solution and conventional 

geochemical modeling. 

 
Source: Perform by Author. 

2.7 Optimization Results 

The optimization of UNISIM-II using seawater injection and EWI was performed, 

enabling the comparison of performance in oil recovery and its effects on the financial 

return on each injection project. The results are based on real costs and prices, but do not 

represent legitimate profitability; even so, they still allow a reliable comparison. 

The economic evaluation description of the benchmark did not contain the EWI 

cost, so we define an increase of 25%, 75%, 300%, and 500% in relation to seawater 

injection cost. Thus, we performed four cases of EWI optimization, varying only the water 

injection price with salinity control, adding to the analysis the changes in ion composition 

generated by differences in its cost. 

The results of the variables of wells, ionic concentration, the ion interpolator, and 

corresponding maximum NPV for each optimization case is displayed in the table below 

(Table 7). Notice the pressure of wells and flow conditions are similar in all the optimized 

cases, assigning the injection salinity in NPV changes. Also, three cases of EWI (25, 75 

and 300%) had higher profits than the common water (seawater) injection, indicating that 

the advanced method is potentially more profitable considering a margin of up to 300% 

increase in the injection cost. 
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Table 7: Optimization results for each adjusted variable in the common water injection and 

Engineered Salinity. 

Source: Perform by Author. 

When compared the results of accumulated production/injection fluids between the 

methods used (Table 8), the oil recovery increases by about 8.7% with EWI; the injected 

volumes are maintained close, and the water production is reduced by around 52%, 

saving this cost and improving the injection performance through ionic calibration. In sum, 

more oil was recovered with the same injection amount, and more water remained in the 

reservoir. 

Table 8: Fluids production/Injection and oil recovery factor in the optimum cases. 

Case Oil Produced 
(10 5 m3) 

Water Produced 
(105 m3) 

Water Injection 
(105 m3) 

Oil Recovery 

Factor (%) 

Water 15.61 19.19 39.63 37.74 

EW-25 19.66 9.45 36.38 47.53 

EW-75 19.58 8.61 35.66 45.35 

EW-300 18.30 10.64 35.25 44.22 

EW-500 19.06 7.96 34.59 46.07 

Source: Perform by Author. 

The optimized salinities (Figure 13) show the sulfate and calcium with higher 

concentrations, increased their quantities with rising cost. All four EWI cases show Ca
2+

 

as the interpolator ion (Table 7), but this does not minimize the effect of the other salts, 

which in this application changes with their different combinations, considering multiple 

influences between them.   

Case 

INJ-

Rate 

INJ-

Press 

PRD-

Rate 

PRD-

Press 
Ca

2+
 SO4

2-
 Mg

2+
 EW-

mod 

NPV ΔNPV 

m3/day kPa m3/day kPa (ppm) (ppm) (ppm) (MMUS$) (MMUS$) 

Water 4988.29 33919.73 1996.66 17943.14 - - - - $16.95 - 
EW - 25 4866.87 33087.09 1961.96 17353.35 7127.23 5420.62 1033.83 3 $66.57 $49.62 
EW- 75 4940.44 33591.59 1982.98 17710.71 7333.23 6627.23 1975.58 3 $58.54 $41.60 
EW- 300 4975.48 33831.83 1992.99 17880.88 8931.33 8038.64 739.54 3 $24.69 $7.74 
EW- 500 4898.4 33303.3 1970.97 17506.51 8715.52 8401.6 1661.66 3 $8.22 -$8.73 
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Figure 13: Ionic concentration of water injection obtained by the optimization process.  

 

Source: Perform by Author. 

This step shows the optimized concentrations are not low, reinforcing that to 

improve the projected water injection technology requires exploration with a higher range 

of ion concentrations considering their technical and economic viability. As pointed by 

Adegbite and Al-Shalabi (2020), the low salinity levels bring benefits in most injection 

cases. On the other hand, its optimization can converge to a more concentrated use of 

some ions, showing a greater versatility of the EWI technique. 
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Figure 14: Relative permeability of Engineered Water Optimized versus Normal relative 

permeability. 

 
Source: Perform by Author. 

Finally, we plot the relative permeability curves of the original case, EW-25, and 

EW-500 (Figure 14), analyzing the changes that the ionic compositions produced. We 

observed an increase in the Kr-Oil curve values and a reduction in Kr-Water with the 

proposed ionic concentrations when compared with the original case. The EWI has the 

potential to increase the difference between connate and critical water saturation due to 

changes in the oil flow. The Kr-Oil with EWI had lower saturation points of connate water 

than the original case, reinforcing this expected effect by the injection method. An increase 

occurs at the endpoint on the Kr-Oil curve with EWI, indicating a higher final water 

saturation, with a consequent reduction in residual oil saturation. Analyzing the Figure 14 

based on the changes in Sor and the shape of the Kr-Oil curve, we noticed an oil mobility 

modification by the optimized ionic injection, which resulted in a direct impact on the 

behavior of oil production and on the injection/production water. These comparisons 

indicate a change in the natural wettability of the rock preferential to water (more water-

wet), corroborating the theories approached for the injection method. 
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2.8 Conclusions 

In this article, we developed a feedforward neural network that performed changes 

in the relative permeability data given an ionic condition, having the potential to reproduce 

the same effects in the numerical simulation, considering the EWI geochemical modeling 

of the CMG software. The development of ANN underwent practical tests to define its 

configurations, such as the number of neurons in the hidden layer and the choice of the 

training algorithm, based on the forecast quality (nMSE around 0.0137) that reached the 

best results with Net15_BR. At this stage, several theoretical concepts were applied, 

showing that the nature and amount of data used require practical tests to guarantee the 

best performance of the tool. When coupling the neural network trained in the simulation 

software, we compared its numerical simulation with the results from the conventional 

method of EWI modeling, ensuring a reliable outcome with this new modeling strategy. 

We also compared the simulation time between these methods, in which the neural 

network is fast to predict the necessary adjustments to Kr, not increasing new calculations 

to the production simulation, unlike geochemical modeling, thus reducing the simulation 

time by an average of 90%. The UNISIM-II benchmark and its economic scenario provided 

the optimization of seawater injection and EWI. At this step, the NPV of the field was 

maximized using the flow and pressure conditions of the wells and the salinity of the water 

injection (in the case with EWI) as adjustable variables. The results showed that the 

injection with EWI had a positive effect on the final production profit, with an increase of 

49.62 million dollars (without considering additional Capex due to EWI implementation). 

We compared the accumulated production, in which the projected water injection 

increased oil recovery by about 8.7% with the same injected amount and reduced the 

accumulated water production by around 52%, compared to the seawater injection. EWI 

avoided excessive water production and increased the volume of oil recovered. The EWI-

500 (500% base value increase) case is the only that has NPV less than seawater 

injection; this guarantees the application of the advanced method with a high-cost margin. 

We emphasize that although the economic attributes used are reliable, they do not 

represent a real production scenario, which certainly has other investments and revenues 

considered. The optimization results converged to use higher concentrations of sulfate 
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and calcium, showing the importance of investigating the injection with a higher salinity 

range, but respecting the technical or economic limits. The increase in the Kr of the oil, 

reduction in the Kr of the water, and a decrease in the residual oil saturation confirmed 

the Kr changes to more water-wet conditions. These results in Kr corroborate other studies 

applied to the EWI method, reinforcing the advantages of controlling salinity for managing 

fluids displacement in the reservoir. 
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CHAPTER 3 - HYBRID MACHINE LEARNING TO MODELING THE RELATIVE 
PERMEABILITY CHANGES IN CARBONATE RESERVOIRS UNDER ENGINEERED 
WATER INJECTION  

 

Abstract 
Advanced production methods usage complex fluid iteration mechanisms to 

provide benefits in their use. Thus, its modeling is always complicated to incorporate all 

the effects with accuracy and agility. These conditions are ideal for Machine Learning (ML) 

applications that are fundamentally data-driven. In general, ML tools seek to establish a 

simple relationship between variables to learn the behavior of a target and predict it. 

Therefore, we couple a Hybrid Machine Learning (HML) solution to predict the 

petrophysical behaviors during the Engineered Water Injection (EWI). The hybrid 

methodology uses two machine learning algorithms (K-Means and Artificial Neural 

Network), performing in the first step a classification of the original input permeability and 

then predicting the new relative permeabilities with different injection salinities. This 

pipeline to model the injection with HML is validated first by comparing the actual and 

predicted permeabilities curves. Then, we evaluate the solution in production simulation, 

comparing that outcome with conventional geochemical modeling. Finally, we execute an 

optimization with common water injection and EWI (with HML modeling) to maximize the 

Net Present Value (NPV) of a case study. Like so, that optimization validates the HML in 

interactive predictions, also comparing the injection methods performance. These tests 

present a better option to use the advanced method, which increases the oil production 

(around 7.3%) and dramatically decreases the water injected and produced (-28% e -

40%), being more profitable even which increasing its injection price.   

 

3.1 INTRODUCTION 

Artificial Intelligence (AI) technologies are increasing in applications in the oil and 

gas industry due to the challenges of dealing with high volumes of data (BANGERT, 2021; 

HAJIZADEH, 2019). One of these technologies, Machine Learning (ML), has the 

advantage of processing high amounts of data efficiently, bringing reliable solutions to 
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different problems.  According to Hajizadeh (2019), the number of papers on the Machine 

Learning (ML) topic, has been growing exponentially in current years. Also, the current 

digital transformation acts as a catalyst for the comprehensive usage of these techniques 

(EVANS, 2019). 

The application of reservoir modeling and simulation requires a numerical 

approach based on physical laws, such as mass conservation, thermodynamics, hydraulic 

diffusivity, etc. Although being considered a reliable tool, its results only in an estimation 

of the actual measured data. Indeed, some physical phenomena have a nonlinear 

behavior, being complex to model. On the other hand, an alternative based on the 

relationship between the data is more advantageous in some applications, like in the 

reservoir petrophysical behaviors case (LIU et al., 2019; MASOUDI et al., 2020; 

MOHAGHEGH and AMERI, 1995).  

In addition, the inclusion of physicochemical interactions in the simulation process 

(such as Enhanced Oil Recovery - EOR - injections) lead to even harder numerical 

estimations. In this case, an alternative is use laboratory data in the numerical model, but 

this ties the solution to specific tools, leaving reproducibility limited to the process of 

generating laboratory data (MOSALLANEZHAD; KALANTARIASL, 2021). The EOR 

engineered water injection (EWI) technique that controls the salinity of the injected water 

to increase the volume of recovered oil is an example of injection with a complex 

geochemical background (KORRANI et al., 2014). This ionic control achieves polar 

iterations with the rock altering its natural wettability properties and facilitating fluid 

permeability (AUSTAD et al., 2007; ROSTAMI et al., 2019; SULEIMANOV et al., 2018). 

The geochemical behavior that occurs with injection adds more complexity to its 

numerical solution. Understanding these limitations, we proposed to use an approach 

through a hybrid ML solution. Which a way, can learn the relationship between the 

variables of relative permeability, salinity (formation and injection), and mineralogy, 

becoming able to incorporate in the changes of Kr related to the injection method.  
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To simplify the modeling of engineered water injection, we implemented a solution 

with two complementary machine learning tools (K-Means and Artificial Neural Networks) 

to establish a relationship among salinity, relative permeability, and mineralogical content. 

Thus, we have a reliable approach with ML to reproduce the production simulation similar 

to conventional geochemical modeling. In this case, we initially use a clustering method 

to classify the original relative permeability (Kr), and in sequence, with a given injection 

salinity, is predict a new Kr curve. The use of these two specific ML tools defines as Hybrid 

Machine Learning (HML). 

Finally, we tested the quality of the EWI modeling pipeline with Hybrid ML in an 

iterative optimization process. Thus, we selected a benchmark, Unisim-II, applying two 

injection processes: (i) with common water and (ii) engineered water. Using the economic 

scenario proposed in the benchmark, we maximized the Net Present Value (NPV) with 30 

years of production in both cases, increasing only the cost of the engineered water by 

35%. In these tests, the EW injection had the highest NPV, increasing the final profit by 

approximately 39%, compared with the other injection. This performance is due to an 

increase in oil recovery of 7.3% and the reduction in water injection and production in 

28.5% and 40%, respectively. 

 

3.2 METHODOLOGY 

3.2.1 Data Collection 

To build the database, we selected 30 templates from CMG's collection. Based on 

by SPE solution problems, these synthetic templates were simulated 50 times with the 

EWI method. Each geochemical modeling was performed randomly, keeping the 

characteristics of each case to ensure the results generalization. This synthetic data 

generation strategy by simulation took a data generation time of approximately one month 

to complete. Finally, with a total of 1500 simulated cases, we started the phase of 

structuring and cleaning the dataset.  We adapted the methodology using templates to 

generate synthetic EWI data from Reginato et al. (2021). However, we added the variables 

of formation water salinity and mineralogical content in the initial geochemical modeling. 
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3.2.2 KrModule Procedure 

After the simulation of synthetic cases, we use the KrModule algorithm to obtain 

the new relative permeability. This module works by recursively adjusting the Kr of a model 

with common waterflooding until yield results like the corresponding case with EWI (Figure 

15). KrModule is a solution developed by Reginato et al. (2021) and adapted for this work. 

Here we replace the algorithm that minimizes the error between the production curves to 

the particle swarm optimization (PSO), which previously used the genetic algorithm (GA). 

  

Figure 15: KrModule Schema. 

 

Source: REGINATO et al. (2021). 

Particle Swarm Optimization (PSO) is a method that works by improving a set of 

candidates (or particles) moving in the exploratory space through a velocity and position. 

At each iteration, all particles are readjusted by "moving" in the direction of the current 

best case. 

At the end of the module application, we generate the new relative permeability 

that translates the effects of EWI in the simulation. Thus, we structured the dataset as 

follows: 
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Input: 

• Kr original; 

• Injection salinity concentration; 

• Formation salinity concentration; 

• Mineralogy. 

 Output: 

• Kr adjusted. 

 In order to improve the network training performance by avoiding repeated data, 

we transform the relative permeability curves in the parameters of Brooks and Corey’s 

(1984) equations (Equations 4 and 5). 

;<= = ;<=>? @
1 − B? − B=<
1 − B>? − B=<C

+,
 (4) 

  

;<? = ;<?=< @
B? − B?><7D

1 − B?><7D − B=<C
+-

 (5) 

 

Equation 4: Oil Relative permeability; Equation 5: Water Relative permeability. 

  

3.2.3 Hybrid Machine Learning Method 

The main feature of the HML method is the association of two different ML 

algorithms. In the first step, we used an unsupervised clustering process, the K-Means 

algorithm from the Scikit-learn framework. The K-Means method groups the dataset by 

following the similarity pattern. It is also interesting that it does not use output labels, 

leaving only the training to find these relationships. For this step, we set the number of 

clusters equal to 3 based on the number of wettability types, keeping other 

hyperparameters with the algorithm's default settings. We also use only Kr original as 

input data. Thus, this clustering focused on 3 possible groups by input Kr. 
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Then, the complete data frame is divided into 3 parts following the labels assigned 

in the clustering phase. In this stage, we selected the artificial neural networks (ANNs) of 

the Multi-Layer Perceptron (MPL) type also from Scikit-learn, being able to make a 

performance comparison with the solution proposed by Reginato et al. (2021). Three of 

this ANN was trained using one of the three new corresponding datasets (Figure 16). 

These ANNs are structures of interconnected nodes (neurons), which learn basically by 

defining a pattern between the input and output data ideal for forecasting applications 

(MALEKIAN and CHITSAZ, 2021).  

 

Figure 16: ML Hybrid method overview. 

 

Source: Perform by Author. 

The data set is subjected a standardization process before training with ANNs. We 

employed a mathematical transformation known as Standard Scaler that seeks to center 

the mean of the data at zero and balance the standard deviation in the same order. This 

solves the problem data sets with very discrepant feature scales, which if is not equalized, 

during the training the variables with high variance end up overlap the objective function 

and harms the training performance. The formula below summarizes the transformation 

process: 

Data Collection/Preparation

K-Means Clustering

Cluster 2Cluster 1 Cluster 3

ANN 2ANN 1 ANN 3

Predicted Kr Curve

Unsupervised 
Clusterization

Prediction 
Neural Network



57 

 

 

 

E =
( − F
G  

(6) 

Equation 6: Standard Scaler Transformation. 

The neural networks have undergone adjustments of their hyperparameters to 

improve validation results. We used a model selection approach (Grid Search Cross 

Validation) that systematically tests combinations of ANN configuration, calculating a 

score for each test. Thus, we were able to rank the results with the best prediction 

performance using the normalized mean squared error (nMSE) metric, selecting the best 

case for each ANN. In this process, the variables explored were: 

• Hidden layer size: from 5 to 25 neurons; 

• Activation function: logistic or tanh; 

• Solver: lbfgs, sgd or adam; 

• Learning rate: constant, invscaling, or adaptive. 

The configuration and training of the K-Means model and the neural networks were 

completed. Then, the HML was ready to be engaged in the case study optimization 

process. 

 

3.2.4 EWI and Water Optimization 

 The optimization process used has as an objective function of the Net Present 

Value (NPV) maximization. Thus, to promote a comparative approach, we performed two 

optimizations, with normal water and EWI. For the NPV calculation, we adapted the 

economic scenario from the case study.  

 The operating well parameters (flow rate and pressure) were the optimized 

variables. However, in the case of EWI, the salt concentrations of the injected water were 

added.  Therefore, we had: 

• Production Rate; 

• Production Pressure; 

• Injection Rate; 
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• Injection Pressure; 

• Salinity concentrations (Na, Cl, SO4, Ca, and Mg), just in the EWI scenario. 

 Particle swarm optimization (PSO) was chosen considering its simple 

implementation, fast convergence, and ideal for continuous space formulation problems. 

It is also a metaheuristic method, which avoids premature convergence to local minima. 

 At this stage, we had combined the HML to the optimization in the case of EWI, 

performing it in two steps. First, the K-Means model identified the relative permeability 

group (or label). Then, the neural network corresponding to the group was loaded. The 

neural network used the salinity set at each iteration with the original Kr to predict the new 

curve (Figure 17). 

Figure 17: PSO with HML coupling workflow. 

 
Source: Perform by Author. 
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3.3 CASE STUDY 

3.3.1 UNISIM-II Benchmark 

For the project, we selected the benchmark based on a field in the Brazilian Pre-

Salt. The Unisim-II was developed by the Unisim research group (from Unicamp). This 

case study’s structure combines data from the Ghawar field, dimensions of 5000 x 5000 

x 150m, with 16 faults and a Super-K zone (CORREIA et al., 2015). 

The production system defined in this model gives the injectors and producers 

operating ranges. That operational limits were used in the optimization phase (Table 9). 

Table 9: Wells operational conditions, adapted by Correia et al., (2015). 

Type Vertical Producer Vertical Injection 

Max. water rate (m3/day) - 5000 

Min. oil rate (m3/day) 20 - 

Max. liquid rate (m3/day) 2000 - 

BHP (kgf/cm2) Min 190 Max 350 

Source: Perform by Author. 

 For better performance, we used a reduced model of Unisim-II, the same one used 

for Reginato et al. (2021). This part of the model has 6x6x30 cells in a representative field 

location. Following Reginato et al. (2021), the well configuration uses producer and 

injector wells in opposite corners of the model (one quarter of five-spot). Also, the 

economic scenario is adapted for the proportions of the benchmark cut fraction (Table 

11). 
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Table 10: Economic scenario for reduced model (Reginato et al., 2021). 

Variables Values 
Oil price 54.76 US$/STB 

Gas price 0.70 US$/STB 

Costs (US$/stb) 
Oil production 10.952 

Gas production 0.4675 

Water Production 1.1 

Engineered Water Injection 1.98 

Water injection 1.1 

Investments (US$ millions) 
Drilling and Completion vert. well 22.8/m 

Connection vertical well-platform 13.3 

Platform Equation 

Source: Perform by Author. 

 

Figure 18: Reduced Unisim-II model. 

 

Source: Perform by Author. 

 For the advanced injection with engineered water, we assumed a saline 

composition of the formation and mineralogy. The benchmark is based in two carbonate 

reservoirs then the mineralogy was 50% calcite and 50% dolomite, the most abundant 

minerals in this type of rock. For the ionic configuration of the formation water, we decided 

on 35000 ppm of NaCl, 200 ppm of sulfate (SO42-
) and magnesium (Mg

2+
), and 1000 ppm 



61 

 

 

 

of calcium (Ca
2+

). The benchmark does not have these available data, so we defined 

these variables to proceed with the study. 

3.3.2 KrModule PSO Parameters 

The settings of the optimization algorithm used in the KrModule are shown below: 

Table 11: PSO in KrModule Configuration. 

PSO Features 

n particles 10 

n interactions 12 

Κ 1 

I$ 2.05 

I. 2.05 
wdamp 1 

chi Equation  
Source: Perform by Author. 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 K-Means Clusterization Results 

Initially, we obtained the classification between the three groups for each relative 

permeability defined via the K-Means. Then, we use an orthogonal transformation method 

(principal component analysis - PCA) to reduce the dimensionality of features. This widely 

used method transports the original parameters to a new orthogonal space, further 

reducing and simplifying the set. We applied the reduction from 8 to 3 components, one 

of them being the original labels of each cluster. Thus, we enable a 2D visualization 

(Figure 19) to incorporate the relevance of each reduced feature.  
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Figure 19: PCA plot segmented by clusters.  

 

Source: Perform by Author. 

Based on the plot, we noticed that the clusters are not well defined in the 

distribution, indicating that there is no significant clustering among the data. However, it 

was possible to generate a classification pattern by similarity. Thus, we observed the 

characteristics of each cluster through their respective centroids. We compared this 

sample central of the clusters (Figure 20) to analyze the characteristics belonging to each 

of them.  
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Figure 20: Centroids Clusters as Relative Permeability. 

 
Source: Perform by Author. 

We note here characteristics that we sought to segment at the beginning of the 

clustering process. The choice of 3 clusters in this step was not random. We use quantities 

of options for qualitative types of wettability: oil-wet, water-wet, and intermediate wet, 

following other applications with defines that wettability analysis by the relative 

permeability curve shapes (CRAIG, 1971; MIRZAEI-PAIAMAN, 2021). 

Through clustering centroids, we see these features that define different wettability 

as Craig's method (CRAIG, 1971), grouped by the algorithm independently. Cluster 00 (in 

blue) has the most water wettability characteristics of all, with the intersection point of the 

Kr curves greater than 0.5 of Sw (second Craig’s rule), lower residual oil saturation 

(approx. 0.67 Sw), and oil permeability curve with lower angulation level, which means, 

that oil permeability has slower reduction as Sw increases. Cluster 01 (in green), which 
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has a residual oil saturation (Sor) below 0.5 Sw, Kr-Oil curve with a large slope, and the 

beginning of water mobility already at low saturation (Sw at 0.25). For the class of 

intermediates, we have cluster 02, with characteristics between the two cases, but with 

the Kr-Oil starting point higher than Kr-Water and the two curves with the highest slopes. 

 

3.4.2 Neural Network Results 

The neural net training uses the cross-validation method. Thus, we set 70% of the 

data for training, 15% for testing, and 15% for validation. Their hyperparameters achieve 

through grid search exploration (Table 12). In the end, we observe that the optimum net 

configurations did not present very expressive differences, but its application increased in 

all cases the performance of the predictions (Figure 21). This optimization application with 

systematic testing of neural network configurations ensures reliability in its performance. 

That is different from the Reginato et al. (2021) validation, which tested two learning 

algorithms on a smaller range of neurons in the hidden layer. 

 

Table 12: Grid Search CV final optimization in each case. 

Hyperparameter Net 00 Net 01 Net 02 

Hidden layer size 12 10 11 
Activation Logistic tanh logistic 
Solver lbfgs lbfgs lbfgs 
Learning rate adaptive adaptive adaptive 

Source: Perform by Author. 

 



65 

 

 

 

 

Figure 21: Net 00 R2 score vs hidden layers number using grid search CV. 

 
Source: Perform by Author. 

Next, using the validation fraction of the data, we compare the actual values with 

the predicted ones. Through a cross-plot (Figure 23), it is possible to observe the 

distribution of the three cases approaching the expected diagonal linear regression. We 

confirm the predictions by the R
2
 score between the actual and forecast values, which 

were 0.929, 0.872, and 0.897. 
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Figure 22: Cross-plot predicted vs actual values.  

 

Source: Perform by Author. 

 We also selected three random Kr cases from the validation to compare the shape 

of the forecasted curves by the networks and evaluate their quality. 

Figure 23 (a, b, and c): Comparison of Kr-Curve predicted by each network (green) and the 

actual curves (black). 
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Source: Perform by Author. 

These plots confirm that the Network with the highest R
2
 score provides an 

accurate fit of the curves. Nevertheless, the other networks also show well results when 

comparing the shape of the curves. Thus, it is possible to confirm the neural network 

application reliability with their results. The R
2
 score of the ML approach performed by 

Reginato et al. (2021) is higher in absolute values (above 90%). But the current approach 

considers more training variables, enriching the behavior of Kr a for the neural network to 

predict. 

3.4.3 Optimizations  

At this stage, we perform two optimization processes: (i) Unisim-II 6x6 with original 

water injection; and (ii) Unisim-II 6x6 with EWI. However, in the case of EOR, we increase 

by 25% the cost of injected water.  

In the optimization with common water, the best case ended up with NPV equal to 

MM US $18.21 in a 30-year production period, with an oil recovery factor equal 38%. In 

this case, it is worth noting that the volume of water produced is 6x highest than the volume 

of oil (Table 13). Compared to the results of the EWI case, there was not a very high 

increase in oil recovery but a significant reduction in production and water injection 

volumes (-28.5% and -40.5%). These changes promote a 45.3% increase in the final NPV 

result with the advanced method (approximately MM $47.8). 
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Figure 24: Percent volume of fluids. 

 
Source: Perform by Author. 

Table 13: Fluids production, recovery factor, and final VPL from optimum cases. 

 Oil Produce 
(105m3) 

Water Produce 
(105m3) 

Water Injected 
(105m3) 

Oil Recovery Factor 
(%) 

Final VPL 
(MMUS) 

Water 15.72 15.35 40.03 38.01 $      18.21 
EWI 16.88 9.13 28.60 41.4 $      26.45 

Source: Perform by Author. 

 The optimized wells variables in the two cases showed a convergence. The 

injection flow rate for the common water case is lower to control the injection 

volume/production of water that is very high. 

Table 14: Optimized variables results. 

Inj Rate 
(m3/day) 

Inj Pres  
kPa 

Prd Rate 
(m3/day) 

Prd Press 
kPa 

SO4
2- 

(PPM) 
Ca2+    

(PPM) 
Cl- 

(PPM) 
Mg2+ 

(PPM) 
Na+            

(PPM) 

2,091.66 33,256.36 1,994.50 996.73           

2,878.92 33,565.98 1,995.80 989.79 1,493.01 4,933.71 198.64 800.63 14,951.14 
Source: Perform by Author. 

7.33%

-40.52%

-28.54%

-45%

-35%

-25%

-15%

-5%

5%

15%

1

Percentage volume changed between EWI and Water Injection

Oil Produce Water Produce Water Injected
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 The optimum salt solution had 22,575 ppm in total, with more than half composed 

of sodium. The sulfate concentration is increased compared to the standard saline 

solution. This ion is relevant for promoting the geochemical iterations of wettability 

reversal, so this increase in concentration was expected for the final Kr adjustment to go 

to a higher water wettability condition. 

 

Figure 25: Optimized injection salinity. 

 
Source: Perform by Author. 

 Therefore, we plot the optimized Kr curve with the salinities compared to the 

original (Figure 26). Here we see that the optimized result (green) had the Kro curve above 

the original case, increasing this permeability. Another important aspect is the reduction 

of the residual oil saturation, from 0.45 in the original case to 0.33 in the optimized case. 

The water condition is also changed, reducing Krw during all points of its saturation. 

Despite the significant changes, the new relative permeability still preserves 

characteristics of its base-case shape (Kr Original). But the analyses validate the changes 

for increased water wettability. The Kr resultant of optimization performed by Reginato et 

al. (2021) did not preserve as many features of the same original case, caused by the 

smaller number of features that the model of Reginato et al. (2021) used for training. 

These added features decrease the change in Kr shape, making sense that EWI performs 

simple salinity changes to promote these changes. 
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Figure 26: Relative Permeability after optimization vs original.  

 

Source: Perform by Author. 

Figure 27: Average water saturation during production. 

 

Source: Perform by Author. 
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The effects on production with the advanced method was also compared through the 

average water saturation per year of production (Figure 27). In this plot, we see an 

improvement of the EWI that reached higher percentages of water saturation. Therefore, 

we can conclude that by using the EWI method the water ended up covering a larger area 

of the reservoir, avoiding fingering effects. This can also be observed in the plane 17 of 

the simulation model at the end of production (Figure 28). More specifically, through the 

final water saturation in each cell, we can observe that EWI had a better performance. 

Figure 28: Study Case plane 17 of 30, cell water saturation at 23/09/2046.  

(a) Engineered Water Injection, (b) Waterflooding. 

 

Source: Perform by Author. 
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3.5 CONCLUSIONS 

The hybrid Machine Learning solution enriched the analysis Kr data analysis with 

the clustering approach. The investigation of clusters data shows similarities with types of 

wettability. The step with the three neural networks converged to ideal predictive solutions 

(Figure 23). This hybrid approach provided the training of three more expert networks in 

each cluster, which facilitates the prediction of targets but without losing its generalization 

ability (avoiding overfitting), validating this solution by the R
2
 of validation around 0.9 

scores on average. The model selection tactic (Grid Search Cross Validation) also 

contributed by increasing the prediction performance of the networks, despite the 

computational effort that testing various combinations of hyperparameters consumes. 

Exploring the results of the optimizations, we see that the advanced injection 

method has an increase in the final NPV of 45.3% compared to the common water 

injection case. The advantages of using EOR injection provided an increase in oil 

recovery, but mainly a large reduction in production and water injection. Although EWI 

has the highest injection cost (25% increase), its NPV result was the highest among the 

cases, confirming the efficiency of using the method that, besides optimizing the variables, 

configured an ideal salt composition for the application. This optimized composition does 

not end up with a final concentration low enough to be considered Low Salinity. But this 

also proves that an optimized salinity can converge to concentrations that are not 

necessarily low, reinforcing the use of less stringent salinity limits in optimizations with this 

type of injection.  
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CHAPTER 4 – CONCLUSIONS 

Applications with machine learning algorithms were successful in predicting the 

behavior of relative permeability parameters during EW injection. That shows a new 

approach to data-based modeling of complex reservoir effects, which is a simplified and 

agile way (Figure 12) couple effects and improve simulation accuracy. Despite the 

synthetic data used to train the neural networks, when we compared the ML application 

with the conventional geochemical methodology, was achieved high accuracy with the 

new approach (as we see in Figure 10). Also, we increased the training variables of the 

neural networks with the addition of sodium, chlorine, the formation water salinity, and 

mineralogical content (applied in Chapter 3), which adds more complexity to the problem, 

but also combine more relevant characteristics for predicting the behavior of the new Kr. 

Thus, the HML approach was a solution to deal with this increase in training variables. 

Then, the pipeline set an unsupervised classifier (the K-Means algorithm), which allowed 

the analysis of the characteristics of the 3 clusters by their centroids (Figure 20). In this 

analysis, we used Craig's rules to define the rock wettability based on Kr parameters. 

Thus, we observe that each centroid represents a wettability condition, so independently, 

the algorithm clustered the Kr following this characteristic. With the labels from clustering, 

we trained three neural networks for each cluster. Thus, this pipeline with two ML 

algorithms preserves the generalization ability without losing the forecast quality (as 

shown in Figure 23).  The ANNs configuration using the Grid Search CV improved the 

prediction quality (Figure 21). Although, this method increases computational effort due 

to several systematic tests that the tool performs to achieve the best hyperparameters 

configuration.   

The results of all optimizations converged for the highest NPV at EW injection. But, 

comparing the approach with the NNF (Chapter 2) to the HML (Chapter 3) for the case of 

EWI-25, we see changes in the optimized salinities. The first application used only the 

potential ions for modeling, and its result set the sulfate and calcium concentration higher 

than 5,000 ppm (Figure 13). In the second application with HML using the five salts, the 

salinity of the sulfate and calcium was lower, only the magnesium remained at the same 

levels as in the previous application, and in this case, the sodium concentration was higher 

than 50% of the total solution. In all applications, one or more salts had a final 
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concentration higher than low salinity levels, validating the argument for increasing the 

salinity range in optimizations. 

The results with NNF compared to the original Kr present more expressive changes 

to a more hydrophilic condition. In the second approach (Chapter 3), we also have the 

changes for this hydrophilic condition (Figure 26), as the increase Kr-Oil, the decrease Kr-

Water, and the residual oil saturation reduction (the endpoint of the Kr-Oil curve). This 

shows which relative permeability alteration to a water-wet condition is more 

advantageous for production, and the optimizations converged for these conditions.   

 The optimization algorithms used showed different results. The waterflooding case 

had differences in the optimized variables and final NPV, where the application with PSO 

obtained a better result. The NPV outcomes with the EWI-25 also varied the NPV, but this 

is explained by the second approach using more training variables, resulting in different 

optimized salinity and Kr settings. Thus, more detailed studies should be conducted to 

investigate these differences in results between the two optimization algorithms.  
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